LIMITS
                              A  limits  is  a  value  that  a  function  or  sequences  "approaches" as  the  input  or  index  approaches  same  value  .  Limits  are  essential  to  calculus  and  are  used  to  defined  continuity, derivatives  and  integrals.
LIMITS OF A FUNCTION
      Suppose  f  is  a  real  valued  function  and  c  is  a  real  number.  then  the  expression,
             It  means  that  f(x) can  made  to  be  as  close  to  L  by  desired  making  X  sufficiently  close  to  c.  it  means  that  above  equation  can  be  made  as  "the  limits  of  F  of  X,as  approaches  to  c,that  is  L.
LIMITS OF A SEQUENCE
Considered  the  following  sequences,  1.79,  1.799,  1.7999.........  it  can  be  observed  that  number  are  approaches  to  1.8 ,  the  limit  of  the  sequences.Formally  suppose  that
         a1, a2,  are  the  sequences  of  a  real  number.It  can  be  stated  that  a  real  number is  L of the  limit  of  this  sequence.
Which  is  read  as
    "The  limit  of  an  as  n  approaches  infinity  equals L"






 























